Graph Theory
Homework 7

Joshua Ruiter

September 28, 2018

Proposition 0.1 (Exercise 1la). Let p € [0,1], and G(n, P) be the set of graphs with n
m N—m

vertices with probability measure P(G) = p™q where ¢ = 1 — p,m = edge(G), N = (Z)
A fized edge e has probability p of being present, P(e € G) = p.

Proof. First, we write P(e € G) as the sum over G with fixed m.

PleeG) =) PG =Y > p¢™"
G m=0 G

ecG ecG
edge(G)=m

There are (T]X ) graphs with edge(G) = m, but we want to count G with a fixed edge e, which
gives us one less choice to make, so there are (g j) graphs with edge(G) = m containing e.

a m_N-—m - N—-1 m, N—m
edgee(EGG):m
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j) + (Nwzl and the Binomial Theorem to simplify.
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Now we use Pascal’s identity (Z )

N

m=0

M= 11+

3
Il
(en)

I
WE
3 =

I
=
_l’_ o
=2

I
@p—\/-\s

|

(S

The upper index change from N to N — 1 is valid because (N _1) = 0. O
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Proposition 0.2 (Exercise 1b). Let G(n, p) be as in part (a). The probability of two different
edges being in G are independent events. That is,

Ple,e' € G) =Ple € G)P(e' € G) =

Proof. The proof is essentially the same as for part (a). We write P(e, e’ € G) as the sum
over GG with fixed m.

N
Ple, e € G) = Z P(G) = Z Z prgN ™
e,egEG m=0 e,e’GGG’

There are (ﬁ) graphs with edge(G) = m, so there are (Z:g) graphs with edge(G) = m
containing e and €’

N N N —9
Z Z pqu—m: Z (m_z)pqu—m

Applying Pascal’s identity three times, we obtain

(2= () =25 )= ()

= -2 —+

m — 2 m m m

Now we can simplify P(e, e’ € G), using the Binomial Theorem and the same upper-index
change trick as in part (a).

Ple,e € G) = mz::()( )pqum_ziv:(N%l)pquerZ( )mN_m
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Proposition 0.3 (Exercise 2a). Let 0 < p < 1, and define a(G) to be the size of a maximum
independent set in a graph G. For G € G(n,p) and s € Z>y,

Pla@) 25 < (7)1 -p®



Proof.

P(a(G) > s) :]P’(EIS:{Ul,...,vk} C G,k > s;vv; QG,V1§i<j§k})
§IP’<HS:{U1,...7US}CG,UWJ- G V1<i<j Ss)

S Z H P(U,‘Uj g G)

S={v1,...;vs} 1i<j<s

_ @(1 _p)®

Note that this is not an equality because there may be an independent set of size strictly
greater than s, or there may be two different independent sets of size s. O]

Proposition 0.4 (Exercise 2b). Let 0 < p < 1, and define tri(G) to be the number of
3-cycles in G. For G € G(n,p),

P 2 - 1 - 2)p

P <tri(G) > g) <

N[ —=

n

Proof. The first inequality is just Markov’s inequality. There are (g) distinct 3-cycles in G.
Label the cycles ¢y, . ..  C(n)s and define
3

0 else

Then E(f;) = P(¢; € G) = p?, and

E(i) = Y E(f) = (Z)p?’

Now the equality follows.
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Proposition 0.5 (Exercise 2c). Let G be a graph with |G| = n, and let s = [%]. Suppose G
satisfies a(G) < s and tri(G) < 5. Then there is a subgraph H C G with |H| > § such that
X(H) > 3 and girth(H) > 3.

Proof. From each 3-cycle in GG, delete one vertex, and take H to be the remaining induced
subgraph of G. Since we remove at most n/2 vertices, |[H| > 3. Clearly, girth(H) > 3, since
every 3-cycle in G was broken.



Note that for any graph H, x(H)a(H) > |H|, since a(H) is the maximum size of an
independent set and y(H) is the minimum number of mutually disjoint independent sets.
Also note that a(G) > a(H). Thus

|H| n/2 _n/2
o(H) = a(G) ~ nj6

X(H) > 3

]

(Exercise 2d) I spent some time using Octave to try and find values of n, p so that the lower
bound

Plup) =1- (1) (1= p) - - )00 - 2

is positive. In the graph below, the horizontal axis is the p value, and the vertical axis is
P(n,p) where n is fixed. Each of the curves represents a single value of n, ranging from
n = 18 to n = 420. The curve that attains a maximum near 0.8 is the n = 18 case, and the
value of n increases by 6 as you jump from curve to curve going to the left.
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I also plotted such graphs for n up to 1500, and the visual pattern continues: the graphs
get steeper, and bunch up more and more. For n = 1500, the maximum value attained by
P(n,p) on [0,1] is around —6. The graph below depicts a zoomed in view of the graph of
P(1500, p) for p € [0,0.05].
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Unfortunately, something probably to do with the numbers getting too large prevented me

from successfully plotting these graphs for n > 1500. This isn’t too surprising, because such
250

computations involve expressions like (1255000) and (1 — p)< 2),

It’s really hard to visually estimate from these graphs how large n one would need for
P(n,p) > 0, or even if such n exists. On the other hand, from my example in part (e), we
know that n = 22 is sufficient have a triangle free subgraph H with |H| = % and x(H) = 4,
so the estimate is quite weak.

Proposition 0.6 (Exercise 3a). For fized p € (0,1) and fized k € Z>, and G € G(n,p),
P(G is k-connected) — 1 asn — 0o

Proof. First, observe that

P(G is k-connected) = 1 — P(G is not k-connected)
>1—-P(ES ={vy,...,v},G\ S is not connected by paths of length 2)

We will give an upper bound for the probability of such an S existing, which will tend to



Z€ro as n — oQ.

P(failure) = P(3S = {v1,...,vx},G \ S is not connected by paths of length 2)
P(3S ={v1,..., v}, 3a,b € G\ S, a,bnot connected by a path of length 2)
P(3S ={v1,...,v},3a, b€ G\ S,Ve e G\ S,ac & G or be ¢ G)

Z Z HP(achorbcg_iG)

S={v1,..., vk} a,beEG\S ceG\S

(e

— an+2(1 _ p2>n
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Since (1 — p?) < 1, and exponential decay always beats polynomial growth, this tends to
Zero as n — 00. [

Proposition 0.7 (Exercise 3b). For fized k € Z>,. Let p(n) be

(i )T
=1~ (i)

Then p(n) — 0 as n — oo, and for G € G(n,p(n)),
P(G is k-connected) — 1 asn — oo

Proof. First, we verity that p(n) — 0 as n — oc.

1 1

lim (;)"’“ = lim ( ! >”’“
Q) G G

Since the three factors on the right each go to 1 in the limit, this limit is 1. Thus p(n) — 0
as n — oo. Now we verify the that the probability of G being connected goes to 1. From
part (a), we have the estimate

— 1
P(G is not k-connected) < (Z) (n 5 k) (1—p*)"F = -

Note that p(n) was chosen precisely so that this would simplify to % Since % — 0asn — oo,
the probability that G is k-connected goes to 1. O



